76范文网
温室大棚测控系统设计毕业设计
时间:2019-06-03 10:34:23 来源:76范文网

温室大棚测控系统设计毕业设计 本文简介:

毕业设计外文文献翻译毕业设计题目温室大棚测控系统设计翻译题目智能红外温度传感器专业测控技术与仪器姓名班级学号指导教师机械与材料工程学院二〇XX年X月智能红外温度传感器跟上不断发展的工艺技术对工艺工程师来说是一向重大挑战。再加上为了保持目前迅速变化的监测和控制方法的过程的要求,所以这项任务已变得相当迫

温室大棚测控系统设计毕业设计 本文内容:

毕业设计外文文献翻译
毕业设计题目
温室大棚测控系统设计
翻译题目
智能红外温度传感器
专业
测控技术与仪器
姓名
班级
学号
指导教师机械与材料工程学院
二〇XX年X月智能红外温度传感器
跟上不断发展的工艺技术对工艺工程师来说是一向重大挑战。再加上为了保持目前迅速变化的监测和控制方法的过程的要求,所以这项任务已变得相当迫切。然而,红外温度传感器制造商正在为用户提供所需的工具来应付这些挑战:最新的计算机相关的硬件、软件和通信设备,以及最先进的数字电路。其中最主要的工具,不过是新一代的红外温度计---智能传感器。
今天新的智能红外传感器代表了两个迅速发展的结合了红外测温和通常与计算机联系在一起的高速数字技术的科学联盟。这些文书被称为智能传感器,因为他们把微处理器作为编程的双向收发器。传感器之间的串行通信的生产车间和计算机控制室。而且因为电路体积小,传感器因此更小,简化了在紧张或尴尬地区的安装。智能传感器集成到新的或现有的过程控制系统,从一个新的先进水平,在温度监测和控制方面为过程控制方面的工程师提供了一个直接的好处。
1.集成智能传感器到过程线
同时广泛推行的智能红外传感器是新的,红外测温已成功地应用于过程监测和控制几十年了。在过去,如果工艺工程师需要改变传感器的设置,它们将不得不关闭或者删除线传感器或尝试手动重置到位。当然也可能导致路线的延误,在某些情况下,是十分危险的。升级传感器通常需要购买一个新单位,校准它的进程,并且在生产线停滞的时候安装它。例如,某些传感器的镀锌铁丝厂用了安装了大桶的熔融铅、锌、和/或盐酸并且可以毫不费力的从狭窄小道流出来。从安全利益考虑,生产线将不得不关闭,并且至少在降温24小时之前改变和升级传感器。
今天,工艺工程师可以远程配置、监测、处理、升级和维护其红外温度传感器。带有双向RS
-
485接口或RS
-
232通信功能的智能模型简化了融入过程控制系统的过程。一旦传感器被安装在生产线,工程师就可以根据其所有参数来适应不断变化的条件,一切都只是从控制室中的个人电脑。举例来说,如果环境温度的波动,或程序本身经历类型、厚度、或温度的改变,所有过程工程师需要做的是定制或恢复保存在计算机终端的设置。如果智能传感器由于高温度环境、电缆断裂或者未能组成部分而失败了,其故障进行自动修复。该传感器激活触发报警停机,防止损坏产品和机械。如果烤炉或冷却器失败了,音响和LO警报信号还可以指出哪里有问题并且关闭生产线。
1.1
延长传感器的使用寿命
为了使智能传感器符合数千种不同类型的进程,就必须完全自己定义。由于智能传感器包含只读(可擦除可编程只读存储器),用户可以重新编程以满足他们各自的具体程序要求使用的现场标定、诊断、或来自传感器制造商的实用软件。
另一个拥有智能传感器的好处是其固件,在其芯片的嵌入式软件,可通过通讯联系的升级来修订,因此它们成为可利用的-----不用从生产线移走传感器。固件升级可以延长一个传感器的工作寿命,可以真正的使一个智能传感器智能化。
Raytek公司的马拉松系列的是一个全系列的1
-
2色比红外温度计,可以与多达32个智能传感器联网。现有模式包括综合单位和光纤传感器的电子盒套来确保可在高温环境上安装。
点击一个传感器窗口显示了特定的传感器的配置设置。
Windows图形界面直观,易于使用。在配置屏幕,工艺工程师能够监测电流传感器的设置,调整它们来满足他们的需要,或重置传感器回到工厂默认值。所有显示的信息都来自经由RS
-
485接口或RS
-
232串口连接的传感器。
头两栏为了给用户输入,第三个为了在第一时间内监测传感器的参数,某些参数可以通过其他屏幕定制的程序和从PC到传感器的命令更改。参数可以被用户通过以下方面来改变输入:
?继电器触点可设定为NO
(常开)或数控(通常关闭)。
?中继功能可设定警报或设定点。
?温度单位可以改变由摄氏度至华氏度,反之亦然。
?显示器和模拟输出模式可以改变的智能传感器,再加上一两色的容量。
?激光(如传感器配有激光瞄准)可以开启或关闭。
?毫安输出设置和范围,可作为自动进程触发或警报。
?发射率(1色)或斜率(两色)比热值可设定。发射率和斜率值一般金属和非金属材料,并说明如何确定发射和斜坡,通常包含在传感器中。
?信号处理定义的温度参数返回,平均返回一个对象的平均气温在一段时间内;峰值举行返回一个对象的最高温度可能在一段时间内或由外部触发。
?音响报警/劳报警可设定警告不当温度的变化,在一些过程线,这可能是引发打破在一个产品或故障加热器或冷却器的内容。
?衰减表明报警并关闭设置双色比智能传感器,在这个例子中,如果镜头是95%遮蔽,报警警告说温度的结果可能是失去准确性(称为“肮脏的窗口”报警)。95%以上可以默默无闻的触发一个自动关机的进程。
1.2
智能红外传感器的应用
智能型红外传感器,可用于任何生产过程温度是至关重要的高品质的产品中。
红外温度传感器可以看到监控产品的各种热工前后和干燥前后的温度。智能传感器上配置一个高速多点网络(定义见下文),并从远程监控的计算机上独立寻址。各地的传感器测量的温度都可以以调查的数据单独或季度的绘制成图表,便于监测和温度数据过程的存档。使用远程处理功能,设置点、报警器、发射率、和信号处理,信息可以被下载到每个传感器,其结果是更严格的过程控制。

1.3
远程在线寻址
在一个持续的和图2相似的过程,智能传感器可以连接到一个或其他显示器。图表记录器和控制器分别在一个单独网络。该传感器可安排在多点或点对点配置,或者只是简单的独立。
在多点配置,多个传感器(多达32个在某些情况下)都可以联结到网络型电缆。每个传感器都拥有自己的“地址”,允许它分别设定不同的操作参数。由于智能传感器使用RS
-
485接口或FSK信号(频移键控)的通信,他们可以从控制室的电脑设置相当大的距离---多达1200米(
4000英尺)的RS
-
485接口,或3000米(一点零零零万英尺)的FSK信号。有些程序使用RS
-
232接口通信,但电缆的长度限制到100英尺。
在一个点对点的安装,智能传感器可以连接到图表记录、过程控制器、显示器、以及控制计算机。在这种类型的安装,数字通信可结合毫安电流回路作为一个完整的全方位的进程通信软件包。
但是,有时专门的程序得需要专门软件。一个壁纸制造商可能需要一系列的传感器编程来检查休息和眼泪沿着整个新闻界和涂层运行,但每个地区都有不同的环境和地表温度,如果发现表面的不正常现象,每个传感器必须触发警报。例如为了满足客户商具体的要求,工程师们可以使用出版协议数据编写自己的程序。这些自定义程序可以远程在飞虫身上安装传感器而不用关闭生产线。
2.刻度的标定和传感器的升级
无论是使用多点、点对点、或单一的传感器网络,工艺工程师需要适当的软件工具在自己的个人计算机上来校准、配置、监控和升级这些传感器。简单易于使用的数据采集、配置和实用程序通常是智能传感器套件购买时的一部分,或自定义的软件都可以使用。
与外地校准软件相比,智能传感器是可校准的。新的参数直接下载到传感器的电路和传感器的当前参数被保存和存储为计算机数据文件,以确保完整记录校准和/或参数的变化保留。一套校准技术,可以包括单点偏移和两到三点的可变温度:
?单点抵消
如果一个单一的温度在特定的过程中使用,传感器的读数需要重置,使其符合一个已知温度,单点偏移校准应使用。这个偏移将适用于所有温度在整个温度范围内工作。例如,如果一个已知的温度沿一个浮动的玻璃生产线是1800°F,智能传感器或一系列的传感器,都可以校准那个温度。
?两点
如果传感器的读数必须符合两个特定的温度,这两个点在校准图3所示应选择。这种技术使用校准温度来计算增益和偏移是适用于所有在整个温度范围内的温度。
?三点变温度
如果这一进程具有广泛的温度范围,传感器的读数必须符合三个具体温度,最好的选择是3点变温度校准。这种技术使用校准温度计算两个收益和两个偏移。第一增益和偏移适用于所有低于中点温度并在第二盘以上所有的中点的温度。三点校准和多单双点相比不太常见,但偶尔制造商需要执行此技术,以满足特定的标准。
现场校准软件还允许使用常规诊断方法,包括被运行在智能传感器上的电源电压和中继试验。结果让工艺工程师知道传感器的效果最佳,并在其做出一些必要的故障排除更加容易。
3.结尾
新一代的智能红外温度传感器要求工艺工程师必须跟上新的生产技术和产量增加所带来的变化。他们现在可以配置尽可能多的传感器来满足他们特殊控制过程的需要并且延长这些传感器寿命,远远超出先前的“不聪明”的设计。由于生产速度提高,设备停机时间必须减少。通过尽可能的监测设备和微调温度变量而无需关闭的进程,工程师们可以保持高效率的过程和提供高质量的产品。智能红外传感器的数字化处理组件和通讯能力提供一定程度的到现在都没有实现的灵活性、安全性和易用性。
红外线(
IR
)辐射是电磁波谱,其中包括无线电波、微波、可见光和紫外线,以及伽马射线和X射线。IR是在可见部分的频谱和无线电波之间的。红外波长通常以微米表示并且光谱范围由0.7至1000微米,只有0.7-14微米波段用于红外测温。
?

采用先进的光学系统和探测器,非接触式红外温度计就可以专注于几乎任何部分或0.7-14微米波段的部分。因为每一个对象(除黑体)排放量的最佳红外能量在某一特定点沿线的红外波段,每个过程可能需要独特的传感器模型与具体的光学和探测器类型。例如,一个传感器,一个狭窄的集中在3.43微米的频谱范围适合用于测量表面温度的聚乙烯和相关材料。一个传感器设在5微米是用来衡量玻璃表面。
光传感器用于金属和金属箔片。更广泛的光谱范围内用来衡量温度较低的表面,如纸、纸板、聚、和铝箔复合材料。
?

一个对象通过它的温度来体现排放红外能量增加还是减少。它是发出能量,以目标发射率来测量,那表明了一个物体的温度。
发射率是一个术语,用于量化能源发光特性不同的材料和表面。红外传感器具有可调发射率设定,通常是从0.1到1.0,使准确的测量的几个表面类型的温度。
发出的能量来自于一个对象,并通过其光学系统达到了红外传感器,其重点在能源上的一个或多个光敏探测器。然后探测器的红外能量转换成电信号,而这又是转换成温度值基于传感器的校准方程和目标的发射率。这一温度值可显示在传感器,或在一种智能传感器转换成数字输出,并显示在计算机终端。
Smart
Infrared
Temperature
Sensors
Keeping
up
with
continuously
evolving
process
technologies
is
a
major
challenge
for
process
engineers.
Add
to
that
the
demands
of
staying
current
with
rapidly
evolving
methods
of
monitoring
and
controlling
those
processes,
and
the
assignment
can
become
quite
intimidating.
However,
infrared
(IR)
temperature
sensor
manufacturers
are
giving
users
the
tools
they
need
to
meet
these
challenges:
the
latest
computer-related
hardware,
software,
and
communications
equipment,
as
well
as
leading-edge
digital
circuitry.
Chief
among
these
tools,
though,
is
the
next
generation
of
IR
thermometers—the
smart
sensor.
Today’s
new
smart
IR
sensors
represent
a
union
of
two
rapidly
evolving
sciences
that
combine
IR
temperature
measurement
with
high-speed
digital
technologies
usually
associated
with
the
computer.
These
instruments
are
called
smart
sensors
because
they
incorporate
microprocessors
programmed
to
act
as
transceivers
for
bidirectional,
serial
communications
between
sensors
on
the
manufacturing
floor
and
computers
in
the
control
room
(see
Photo
1).
And
because
the
circuitry
is
smaller,
the
sensors
are
smaller,
simplifying
installation
in
tight
or
awkward
areas.
Integrating
smart
sensors
into
new
or
existing
process
control
systems
offers
an
immediate
advantage
to
process
control
engineers
in
terms
of
providing
a
new
level
of
sophistication
in
temperature
monitoring
and
control.
Integrating
Smart
Sensors
into
Process
LinesWhile
the
widespread
implementation
of
smart
IR
sensors
is
new,
IR
temperature
measurement
has
been
successfully
used
in
process
monitoring
and
control
for
decades
(see
the
sidebar,
“How
Infrared
Temperature
Sensors
Work,”
below).
In
the
past,
if
process
engineers
needed
to
change
a
sensor’s
settings,
they
would
have
to
either
shut
down
the
line
to
remove
the
sensor
or
try
to
manually
reset
it
in
place.
Either
course
could
cause
delays
in
the
line,
and,
in
some
cases,
be
very
dangerous.
Upgrading
a
sensor
usually
required
buying
a
new
unit,
calibrating
it
to
the
process,
and
installing
it
while
the
process
line
lay
inactive.
For
example,
some
of
the
sensors
in
a
wire
galvanizing
plant
used
to
be
mounted
over
vats
of
molten
lead,
zinc,
and/or
muriatic
acid
and
accessible
only
by
reaching
out
over
the
vats
from
a
catwalk.
In
the
interests
of
safety,
the
process
line
would
have
to
be
shut
down
for
at
least
24
hours
to
cool
before
changing
and
upgrading
a
sensor.Today,
process
engineers
can
remotely
configure,
monitor,
address,
upgrade,
and
maintain
their
IR
temperature
sensors.
Smart
models
with
bidirectional
RS-485
or
RS-232
communications
capabilities
simplify
integration
into
process
control
systems.
Once
a
sensor
is
installed
on
a
process
line,
engineers
can
tailor
all
its
parameters
to
fit
changing
conditions—all
from
a
PC
in
the
control
room.
If,
for
example,
the
ambient
temperature
fluctuates,
or
the
process
itself
undergoes
changes
in
type,
thickness,
or
temperature,
all
a
process
engineer
needs
to
do
is
customize
or
restore
saved
settings
at
a
computer
terminal.
If
a
smart
sensor
fails
due
to
high
ambient
temperature
conditions,
a
cut
cable,
or
failed
components,
its
fail-safe
conditions
engage
automatically.
The
sensor
activates
an
alarm
to
trigger
a
shutdown,
preventing
damage
to
product
and
machinery.
If
ovens
or
coolers
fail,
HI
and
LO
alarms
can
also
signal
that
there
is
a
problem
and/or
shut
down
the
line.
Extending
a
Sensor’s
Useful
Life
For
smart
sensors
to
be
compatible
with
thousands
of
different
types
of
processes,
they
must
be
fully
customizable.
Because
smart
sensors
contain
EPROMs
(erasable
programmable
read
only
memory),
users
can
reprogram
them
to
meet
their
specific
process
requirements
using
field
calibration,
diagnostics,
and/or
utility
software
from
the
sensor
manufacturer.
Another
benefit
of
owning
a
smart
sensor
is
that
its
firmware,
the
software
embedded
in
its
chips,
can
be
upgraded
via
the
communications
link
to
revisions
as
they
become
available—without
removing
the
sensor
from
the
process
line.
Firmware
upgrades
extend
the
working
life
of
a
sensor
and
can
actually
make
a
smart
sensor
smarter.The
Raytek
Marathon
Series
is
a
full
line
of
1-
and
2-color
ratio
IR
thermometers
that
can
be
networked
with
up
to
32
smart
sensors.
Available
models
include
both
integrated
units
and
fiber-optic
sensors
with
electronic
enclosures
that
can
be
mounted
away
from
high
ambient
temperatures.
(see
Photo
1).
Clicking
on
a
sensor
window
displays
the
configuration
settings
for
that
particular
sensor.
The
Windows
graphical
interface
is
intuitive
and
easy
to
use.
In
the
configuration
screen,
process
engineers
can
monitor
current
sensor
settings,
adjust
them
to
meet
their
needs,
or
reset
the
sensor
back
to
the
factory
defaults.
All
the
displayed
information
comes
from
the
sensor
by
way
of
the
RS-485
or
RS-232
serial
connection.
The
first
two
columns
are
for
user
input.
The
third
monitors
the
sensor’s
parameters
in
real
time.
Some
parameters
can
be
changed
through
other
screens,
custom
programming,
and
direct
PC-to-sensor
commands.
Parameters
that
can
be
changed
by
user
input
include
the
following:
·
Relay
contact
can
be
set
to
NO
(normally
open)
or
NC
(normally
closed).
·
Relay
function
can
be
set
to
alarm
or
setpoint.
·
Temperature
units
can
be
changed
from
degrees
Celsius
to
degrees
Fahrenheit,
or
vice
versa.
·
Display
and
analog
output
mode
can
be
changed
for
smart
sensors
that
have
combined
one-
and
two-color
capabilities.
·
Laser
(if
the
sensor
is
equipped
with
laser
aiming)
can
be
turned
on
or
off.
·
Milliamp
output
settings
and
range
can
be
used
as
automatic
process
triggers
or
alarms.
·
Emissivity
(for
one-color)
or
slope
(for
two-color)
ratio
thermometers
values
can
be
set.
Emissivity
and
slope
values
for
common
metal
and
nonmetal
materials,
and
instructions
on
how
to
determine
emissivity
and
slope,
are
usually
included
with
sensors.
·
Signal
processing
defines
the
temperature
parameters
returned.
Average
returns
an
object’s
average
temperature
over
a
period
of
time;
peak-hold
returns
an
object’s
peak
temperature
either
over
a
period
of
time
or
by
an
external
trigger.
·
HI
alarm/LO
alarm
can
be
set
to
warn
of
improper
changes
in
temperature.
On
some
process
lines,
this
could
be
triggered
by
a
break
in
a
product
or
by
malfunctioning
heater
or
cooler
elements.
·
Attenuation
indicates
alarm
and
shut
down
settings
for
two-color
ratio
smart
sensors.
In
this
example,
if
the
lens
is
95%
obscured,
an
alarm
warns
that
the
temperature
results
might
be
losing
accuracy
(known
as
a
“dirty
window”
alarm).
More
than
95%
obscurity
can
trigger
an
automatic
shutdown
of
the
process.
Using
Smart
Sensors
Smart
IR
sensors
can
be
used
in
any
manufacturing
process
in
which
temperatures
are
crucial
to
high-quality
product.
Six
IR
temperature
sensors
can
be
seen
monitoring
product
temperatures
before
and
after
the
various
thermal
processes
and
before
and
after
drying.
The
smart
sensors
are
configured
on
a
high-speed
multidrop
network
(defined
below)
and
are
individually
addressable
from
the
remote
supervisory
computer.
Measured
temperatures
at
all
sensor
locations
can
be
polled
individually
or
sequentially;
the
data
can
be
graphed
for
easy
monitoring
or
archived
to
document
process
temperature
data.
Using
remote
addressing
features,
set
points,
alarms,
emissivity,
and
signal
processing,
information
can
be
downloaded
to
each
sensor.
The
result
is
tighter
process
control.
Remote
Online
Addressability
In
a
continuous
process
similar
to
that
in
Figure
2,
smart
sensors
can
be
connected
to
one
another
or
to
other
displays,
chart
recorders,
and
controllers
on
a
single
network.
The
sensors
may
be
arranged
in
multidrop
or
point-to-point
configurations,
or
simply
stand
alone.
In
a
multidrop
configuration,
multiple
sensors
(up
to
32
in
some
cases)
can
be
combined
on
a
network-type
cable.
Each
can
have
its
own
“address,”
allowing
it
to
be
configured
separately
with
different
operating
parameters.
Because
smart
sensors
use
RS-485
or
FSK
(frequency
shift
keyed)
communications,
they
can
be
located
at
considerable
distances
from
the
control
room
computer—up
to
1200
m
(4000
ft.)
for
RS-485,
or
3000
m
(10,000
ft.)
for
FSK.
Some
processes
use
RS-232
communications,
but
cable
length
is
limited
to
<100
ft.
In
a
point-to-point
installation,
smart
sensors
can
be
connected
to
chart
recorders,
process
controllers,
and
displays,
as
well
as
to
the
controlling
computer.
In
this
type
of
installation,
digital
communications
can
be
combined
with
milliamp
current
loops
for
a
complete
all-around
process
communications
package.
Sometimes,
however,
specialized
processes
require
specialized
software.
A
wallpaper
manufacturer
might
need
a
series
of
sensors
programmed
to
check
for
breaks
and
tears
along
the
entire
press
and
coating
run,
but
each
area
has
different
ambient
and
surface
temperatures,
and
each
sensor
must
trigger
an
alarm
if
it
notices
irregularities
in
the
surface.
For
customized
processes
such
as
this,
engineers
can
write
their
own
programs
using
published
protocol
data.
These
custom
programs
can
remotely
reconfigure
sensors
on
the
fly—without
shutting
down
the
process
line.
Field
Calibration
and
Sensor
Upgrades
Whether
using
multidrop,
point-to-point,
or
single
sensor
networks,
process
engineers
need
the
proper
software
tools
on
their
personal
computers
to
calibrate,
configure,
monitor,
and
upgrade
those
sensors.
Simple,
easy-to-use
data
acquisition,
configuration,
and
utility
programs
are
usually
part
of
the
smart
sensor
package
when
purchased,
or
custom
software
can
be
used.
With
field
calibration
software,
smart
sensors
can
be
calibrated,
new
parameters
downloaded
directly
to
the
sensor’s
circuitry,
and
the
sensor’s
current
parameters
saved
and
stored
as
computer
data
files
to
ensure
that
a
complete
record
of
calibration
and/or
parameter
changes
is
kept.
One
set
of
calibration
techniques
can
include
one-point
offset
and
two-
and
three-point
with
variable
temperatures:
?
One-point
offset.
If
a
single
temperature
is
used
in
a
particular
process,
and
the
sensor
reading
needs
to
be
offset
to
make
it
match
a
known
temperature,
one-point
offset
calibration
should
be
used.
This
offset
will
be
applied
to
all
temperatures
throughout
the
entire
temperature
range.
For
example,
if
the
known
temperature
along
a
float
glass
line
is
exactly
1800°F,
the
smart
sensor,
or
series
of
sensors,
can
be
calibrated
to
that
temperature.
?
Two-point.
If
sensor
readings
must
match
at
two
specific
temperatures,
the
two-point
calibration
shown
in
Figure
3
should
be
selected.
This
technique
uses
the
calibration
temperatures
to
calculate
a
gain
and
an
offset
that
are
applied
to
all
temperatures
throughout
the
entire
range.
?
Three-point
with
variable
temperature.
If
the
process
has
a
wide
range
of
temperatures,
and
sensor
readings
need
to
match
at
three
specific
temperatures,
the
best
choice
is
three-point
variable
temperature
calibration
(see
Figure
4).
This
technique
uses
the
calibration
temperatures
to
calculate
two
gains
and
two
offsets.
The
first
gain
and
offset
are
applied
to
all
temperatures
below
a
midpoint
temperature,
and
the
second
set
to
all
temperatures
above
the
midpoint.
Three-point
calibration
is
less
common
than
one-
and
two-point,
but
occasionally
manufacturers
need
to
perform
this
technique
to
meet
specific
standards.
Field
calibration
software
also
allows
routine
diagnostics,
including
power
supply
voltage
and
relay
tests,
to
be
run
on
smart
sensors.
The
results
let
process
engineers
know
if
the
sensors
are
performing
at
their
optimum
and
make
any
necessary
troubleshooting
easier.
Conclusion
The
new
generation
of
smart
IR
temperature
sensors
allows
process
engineers
to
keep
up
with
changes
brought
on
by
newer
manufacturing
techniques
and
increases
in
production.
They
now
can
configure
as
many
sensors
as
necessary
for
their
specific
process
control
needs
and
extend
the
life
of
those
sensors
far
beyond
that
of
earlier,
“non-smart”
designs.
As
production
rates
increase,
equipment
downtime
must
decrease.
By
being
able
to
monitor
equipment
and
fine-tune
temperature
variables
without
shutting
down
a
process,
engineers
can
keep
the
process
efficient
and
the
product
quality
high.
A
smart
IR
sensor’s
digital
processing
components
and
communications
capabilities
provide
a
level
of
flexibility,
safety,
and
ease
of
use
not
achieved
until
now.
How
Infrared
Temperature
Sensors
Work
Infrared
(IR)
radiation
is
part
of
the
electromagnetic
spectrum,
which
includes
radio
waves,
microwaves,
visible
light,
and
ultraviolet
light,
as
well
as
gamma
rays
and
X-rays.
The
IRrange
falls
between
the
visible
portion
of
the
spectrum
and
radio
waves.
IR
wavelengths
are
usually
expressed
in
microns,
with
the
IR
spectrum
extending
from
0.7
to
1000
microns.
Only
the
0.7-14
micron
band
is
used
for
IR
temperature
measurement.Using
advanced
optic
systems
and
detectors,
noncontact
IR
thermometers
can
focus
on
nearly
any
portion
or
portions
of
the
0.7-14
micron
band.
Because
every
object
(with
the
exception
of
a
blackbody)
emits
an
optimum
amount
of
IR
energy
at
a
specific
point
along
the
IR
band,
each
process
may
require
unique
sensor
models
with
specific
optics
and
detector
types.
For
example,
a
sensor
with
a
narrow
spectral
range
centered
at
3.43
microns
is
optimized
for
measuring
the
surface
temperature
of
polyethylene
and
related
materials.
A
sensor
set
up
for
5
microns
is
used
to
measure
glass
surfaces.
A
1
micron
sensor
is
used
for
metals
and
foils.
The
broader
spectral
ranges
are
used
to
measure
lower
temperature
surfaces,
such
as
paper,
board,
poly,
and
foil
composites.The
intensity
of
an
object"s
emitted
IR
energy
increases
or
decreases
in
proportion
to
its
temperature.
It
is
the
emitted
energy,
measured
as
the
target"s
emissivity,
that
indicates
an
object"s
temperature.
Emissivity
is
a
term
used
to
quantify
the
energy-emitting
characteristics
of
different
materials
and
surfaces.
IR
sensors
have
adjustable
emissivity
settings,
usually
from
0.1
to
1.0,
which
allow
accurate
temperature
measurements
of
several
surface
types.The
emitted
energy
comes
from
an
object
and
reaches
the
IR
sensor
through
its
optical
system,
which
focuses
the
energy
onto
one
or
more
photosensitive
detectors.
The
detector
then
converts
the
IR
energy
into
an
electrical
signal,
which
is
in
turn
converted
into
a
temperature
value
based
on
the
sensor"s
calibration
equation
and
the
target"s
emissivity.
This
temperature
value
can
be
displayed
on
the
sensor,
or,
in
the
case
of
the
smart
sensor,
converted
to
a
digital
output
and
displayed
on
a
computer
terminal。

温室大棚测控系统设计毕业设计 本文关键词:测控,毕业设计,温室,大棚,设计

温室大棚测控系统设计毕业设计  来源:网络整理

  免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


温室大棚测控系统设计毕业设计
由:76范文网互联网用户整理提供,链接地址:
http://m.yuan0.cn/a/93566.html
免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
最近更新/ NEWS
推荐专题/ NEWS
温室大棚测控系统设计毕业设计模板 温室大棚测控系统设计毕业设计怎么写 温室大棚测控系统设计毕业设计如何写 温室大棚测控系统设计毕业设计格式 温室大棚测控系统设计毕业设计范例参考 温室大棚测控系统设计毕业设计开头 温室大棚测控系统设计毕业设计开头语 温室大棚测控系统设计毕业设计范文 温室大棚测控系统设计毕业设计范例 温室大棚测控系统设计毕业设计格式大全 温室大棚测控系统设计毕业设计_测控,毕业设计,温室,大棚,设计温室大棚测控系统设计毕业设计大全 温室大棚测控系统设计毕业设计格式模板 温室大棚测控系统设计毕业设计免费模板 温室大棚测控系统设计毕业设计免费格式 温室大棚测控系统设计毕业设计格式如何写 温室大棚测控系统设计毕业设计开头如何写 温室大棚测控系统设计毕业设计免费范文 温室大棚测控系统设计毕业设计免费范例 温室大棚测控系统设计毕业设计免费参考 温室大棚测控系统设计毕业设计模板下载 温室大棚测控系统设计毕业设计免费下载 温室大棚测控系统设计毕业设计模板怎么写 温室大棚测控系统设计毕业设计格式怎么写 温室大棚测控系统设计毕业设计开头怎么写 温室大棚测控系统设计毕业设计开头语怎么写 温室大棚测控系统设计毕业设计模板如何写 温室大棚测控系统设计毕业设计开头语如何写